lunes, 17 de junio de 2013

5.1.-Desarrollo del cilindro recto




Dado un cilindro recto y un plano inclinado (a) representados por s sus proyecciones horizontal y vertical (Fig. 1), se realizará el desarrollo de la superficie cilíndrica cortada por el plano.
Para ello, se dividirá el perímetro de la base del cilindro en 8 partes iguales. Cada una de las divisiones define una generatriz perteneciente a la superficie cilíndrica representadas por las rectas A”J”, B”K”, C”L”, D”M”, E”N”, F”O”, G”P”, H”Q”.  Estas rectas, por estar ubicadas de forma perpendicular al plano de proyección horizontal, están en Verdadera Magnitud (VM). Cada una de las generatrices contiene un punto producto de la intersección con el plano a  (1”,2”…,8”).  También están en VM las distancias entre estos puntos y la base del cilindro. La distancia que existe entre dos generatrices continuas también está en VM en la proyección horizontal y corresponde, por ejemplo la cuerda (A’B’). Esta cuerda mide 1/8 del perímetro de la base.
Se puede entonces, confeccionar el desarrollo de la superficie cilíndrica cortada, transportando las medidas en VM   a una superficie plana (Fig.3). El método consiste en dibujar una segmetno horizontal (EE) de longitud igual al preímetro de la base. Luego dividir este segmento en ocho partes iguales y dibujar de forma ortogonal una generatriz del cilindro por cada división. Sobre cada una de ellas se pueden posicionar los puntos de intersección con a (1,2,…,8) . Uniendo los puntos recién obtenidos se obtiene la curva 1,2,3,4,5,6,7,8,1 intersección entre el cilindro y el plano dado.
 La figura 2 muestra la transición entre la superficie cilíndrica y su desarrollo.

En el próximo capítulo se obtendrá en verdadera magnitud la sección generada por la intersección entre a y el cilindro recto.

No hay comentarios:

Publicar un comentario